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Abstract 

Since its beginnings in the 1950’s, the Fortran language has been the language of 
choice for most scientific and engineering programming. Compilers, seizing on the 
simplicity of the language, have historically generated highly-optimized machine code. 
High performance Fortran (HPF) is a relative new addition to the Fortran dialect. It is an 
attempt to provide an efficient high-level Fortran parallel programming language for the 
latest generation of parallel computers. Its success has been debatable. By operating at a 
high level, the HPF standard does not provide some low-level detail required to achieve 
maximum performance in a multiprocessor system. Message passing using highly-tuned 
libraries, such as the message passing interface (MPI), will more often than not require 
less wall clock time than a comparable HPF code. However, the HPF language and its 
compilers continue to mature and improve. HPF provides a convenient way to represent 
parallelism for those most comfortable with data parallel methodologies. As such, it can 
require a shorter time to solution and provide an acceptable level of efficiency. This 
report discusses our experiences with the language, as well as coding strategies and 
vendor-specific “hooks” that can be used to boost performance. 
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1. Introduction 

The Fortran programming language has a long history in the scientific and engineering 

communities. A vast array of Fortran legacy and dusty-deck codes exist, and the simplicity 

of the language and related compiler-generated code efficiency help to keep it to a large 

extent the language of choice for parallel program development in scientific computing [l]. 

The language continues to evolve and mature with compilers now available for the newest 

Fortran 90 and Fortran 95 standards. These latest versions begin to provide some facets of 

object-oriented program design and language extension by providing modules and abstract 

data typing [2]. 

However, Fortran has continued to lack a set of features needed for portable and efficient 

programming on parallel architectures. The High Performance Fortran Forum (HPFF) met 

for the first time in 1992 with a goal of providing a set of parallel extensions to the Fortran 90 

language [3]. Fortran 90 and HPF are closely associated with the data parallel programming 

model. Data parallelism implies a simultaneous operation applied across a large set of data. 

For example, array syntax notation in Fortran 90 implies than an identical operation be 

applied to all elements of the array. In most cases, this parallelism is at the statement level 

in a source program, and is therefore often known as fine-grain parallelism. This was a 

natural fit for the massively parallel, fine-grain computers popular at the time, such as the 

Connection Machine CM-2 and Mas Par MP-2. 

Several vendors supply HPF compilers for today’s high performance computing systems. 

Data parallel, also known as SIMD (single instruction, multiple data), computers have largely 

been replaced by coarse-grain computers where processing units can work independently [4]. 

The data parallel methodology is general enough that it can be translated in practice to 

work quite well on these multiple instruction, multiple data (MIMD) computers. This re- 

port presents our experiences in using HPF for the COMPOSE (Composite Manufacturing 

Process Simulation Environment) suite of codes under development at the U.S. Army Re- 
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search Laboratory (ARL) and the University of Minnesota. It describes the state of the 

HPF compiler and provides some programming strategies. It also gives some performance 

statistics. A more detailed comparison between performance achieved by the HPF compiler 

and an explicit message passing approach using MPI is beyond the intended scope of this 

report, but will be provided in follow-on manuscripts. Indeed, extension to shared memory 

parallelism using techniques such as OpenMP are also planned for comparison. 

2. Algorithm Design for Parallel Computers 

2.1 Parallel Architectures. The obvious distinguishing feature of parallel comput- 

ers is their ability to have numerous processors executing at once. There are, however, several 

means to this end. Numerous classes of architectures and topologies have been developed 

during the short history of parallel computing. Symmetric multi-processors (SMPs) provide 

an easy parallel programming environment and can be inexpensive to assemble. These ma- 

chines use a shared memory in which all processors have the same access penalty to memory. 

Memory access can potentially limit scalability due to contention in a bus-based topology. 

Accordingly, most of these architectures use no more than 64 processors. Tiered memory 

systems using cache have been used to mitigate these effects. The Sun Microsystems Ultra 

Enterprise 10000 is an example of an SMP. Sun has reported good scalability in clustering 

its SMPs [5]. 

Arrays and clusters have been developed where each node could be an SMP or something 

as simple as a personal computer [6]. They are most often connected using high-speed 

networks. They are scalable, but provide no shared memory and can be difficult to program. 

Massively parallel processors (MPPs) most often feature distributed memories with large 

numbers of processors. The processor interconnection network topologies have ranged from 

hypercubes to three-dimensional (3-D) meshes. Examples include the Connection Machine-5 

(CM-5) that had the ability to function in multiple instruction-multiple data (MIMD) mode, 

where each processor can execute different instructions at the same time on different data 
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sets, or single instruction-multiple data (SIMD) mode, where each processor executed the 

same instruction in lockstep. The Cray T3E-1200 is also an MPP using a tightly-coupled 3-D 

bidirectional torus configuration. Lastly, scalable symmetric multiprocessors (S2MPs) have 

been designed to provide the best features of,SMPs, but they allow for MPP scalability. 

The SGI Origin 2000 and Origin 3800 are examples of these architectures. They employ 

a distributed shared memory and large cache architecture built on a bristled hypercube 

topology. The design intent is to remain scalable by limiting the number of potential “hops” 

data must make before arriving at the processor requesting the information. 

It should be noted that any discussion of interconnection topologies is mostly educational. 

New cross-platform tools and standardized parallel programming methodologies have greatly 

reduced the need for a detailed knowledge of the processor interconnection network. It 

does remain relevant, however, to have a good understanding of the memory systems on 

multiprocessor computers. For example, the main solution to overcoming the widening 

gap between memory and CPU performance has been the development of layered caches. 

Algorithms or coding practices that do not try to remain “cache friendly” are invariably 

doomed to poor execution on the majority of high performance computers in use today. 

2.2 Parallel Algorithms and Programming. The parallel programmer has several 

tasks. The first is to design or select an appropriate algorithm for parallel execution. Often, 

the best sequential algorithm, or the most apparent one, is not the algorithm of choice in 

a parallel environment. Criteria for selection can include any number of metrics, including 

wall clock execution time, FLOP (Floating Point Operations per Second) rates, throughput, 

and implementation difficulty. In most cases, an absolute definition of “performance” is 

ubiquitous and remains a complex issue. For example, spending an inordinate amount of 

time to boost FLOP rates on an algorithm that will only be executed infrequently at most 

hardly seems worth the effort. 

Once an algorithm is selected or designed within the performance requirements, it must 
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then be coded, tested, and optimized. Several parallel programming models may be apparent 

and applicable to the application at hand. Message passing is widely used. Many tasks may 

be created with data exchange and interaction between the processes being carried out by 

sending and receiving messages. The MPI has become the predominate tool in this regard. 

Data parallelism is also widely found in many applications. Data parallelism exploits the 

fact that the same operation is often performed on each item in a set of data. A data 

parallel program is a sequence of such operations. Currently, High Performance Fortran 

(HPF) is the most widely used language to represent data parallelism. Fortran 90 is a data 

parallel language in its own right, but it is limited to strict array syntax parallelism. A final 

methodology is shared memory programming, which allows processes to execute concurrently 

using a common memory space. Examples include OpenMP, SGI loop-level parallelism, 

and Cray shared memory programming (SHMEM). Most often, these approaches require 

programmer-inserted directives into the code to establish parallel regions or indicate safe 

loops for multithreaded execution. 

When mapped to the underlying architecture, each of these models has several issues. 

Chiefly, these are data placement, the number of processors available, the size of the data, 

and the coordination of the processors. There is, however, no best answer as to which pro- 

gramming paradigm best fits which particular architecture. Data parallel codes can perform 

well in distributed shared memory machines as well as systolic SIMD computers. When used 

on distributed memory or distributed shared memory machines, the compiler typically gen- 

erates a Single Program-Multiple Data (SPMD) program in which each processor executes 

the same program on a different data set [7]. However, data communication and layout are 

controlled by the compiler and cannot be easily optimized if required. Furthermore, the mat- 

uration rate of data parallel compilers, especially HPF, has been slow due to the complexity 

of the task. Therefore, they remain, at least somewhat, in a developmental phase. 

MPI codes also create SPMD parallelism. These codes require explicit programmer data 

decomposition and can be very efficient; they are known as the “assembly language” of par- 
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allel programming because of the low-level details surrounding the code. Directive-based 

loop-level parallelism can be scalable, but on shared memory machines, tedious and some- 

times pejorative coding styles are often required to achieve the desired cache optimization. 

Furthermore, loop-level parallelism alone may not properly address all numerical formula- 

tions. 

The choice in parallel methodology can sometimes be difficult. The following sections 

describe some of our experiences in parallelizing the main solver in the COMPOSE suite. 

The physical solutions have been based on domains rendered by finite elements. This code 

has been parallelized using an element-by-element data parallel approach, and by a message 

passing approach. This discussion is limited to our experiences and strategies garnered from 

using the HPF compiler for the data parallel approach. A detailed comparison between the 

two methods will be reported at a later time. 

3. HPF Data Parallel Programming 

The High Performance Fortran model encompasses both communication and parallelism. 

It augments Fortran 90, itself a data parallel language that provides constructs to repre- 

sent concurrent execution, but not domain decomposition. HPF provides additional parallel 

directives and data placement capabilities. Communication is realized through data distribu- 

tion, mapping, and alignment. It is the job of the compiler to effectively map and distribute 

data. Communication is implicit in the code. Parallelism is effected through several mech- 

anisms, including Fortran 90 style array assignments, parallel library routines, the FORALL 

statement, and the INDEPENDENT directive [3]. This list is not complete. Extrinsic proce- 

dures are available to allow for other programming paradigms or languages. The language 

continues to evolve through changes to the standard. Unlike MPI, which is realized through 

calls to a communication library, HPF is a language. To write the most efficient HPF code 

possible, it is therefore necessary to understand the way an HPF compiler works. 



HPF achieves efficient parallelism through a combination of concurrency and locality of 

data reference. While the two are interrelated, it is possible to discuss them separately. 

Concurrency assures that all processors are busy, while locality limits the potential amount 

of communication found in the concurrent statements. For example, consider the parallel 

statement A = B * C (A, B, and C are all conformable vectors), implying A (1) = B (I> * 

C(l>,A(2) = B(2) * C (21, etc. This statement can proceed concurrently with or without 

communication required between the processors, depending on how the data were distributed. 

In the following sections, some of the parallel constructs available in HPF are discussed. 

Proper strategies to ensure optimized code generation, as well as good and bad coding 

practices, are also highlighted. Also discussed is the importance of data mapping to achieve 

locality of reference and avoid potentially costly communication. In this regard, we also 

discuss various actions that can be taken to mitigate communications when dealing with 

unstructured grid data. The HPF compiler referenced later in the report refers to the 

Portland Group HPF (PGHPF) compiler versions 2.4-4 and 3.0 installed at various Major 

Shared Resource Centers. 

3.1 Concurrency and Parallelism in HPF. The FORALL statement provides for 

parallelism by augmenting and merging the Fortran 90 array assignment and WHERE state- 

ments. The FORALL construct is well defined with no nondeterminacy. A multistatement 

FORALL is interpreted as a series of single FORALL statements. A set of valid index values 

is computed based on an optional mask. The right-hand side is then computed for each of 

these index values. At the same time, any subexpressions in the left-hand side are evaluated 

and saved. The computed value of the right-hand side is then assigned to the left-hand side. 

There are no assumptions made on the order of assignments or evaluations. This gives the 

compiler some freedom in determining an optimal algorithm within the constraints listed. 

These constructs are most useful as a generalization of Fortran 90 array assignments with 

more robust array shaping. The INDEPENDENT directive can be applied to either do loops or 

FORALL statements. In the case of do loops, this directive tells the compiler that the loop 
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iterations do not interfere with each other in any way and may be executed in parallel. In 

other words, there are no loop-carried data dependencies. 

3.1.1 Compiler Capabilities and Programming Strategies. The PGHPF compiler 

acts as a front-end, translating HPF code into architecture target Fortran 90 code. As 

such, the parallel programmer is free to utilize any of various well-documented programming 

styles amiable to high-performance microprocessors. Furthermore, compile line options may 

be passed directly to the native compiler to control various optimizations. 

The PGHPF compiler also allows the user to link to runtime libraries and code gener- 

ation supporting either message passing interfaces (MPI) or shared memory programming 

(SMP). Linking with MPI causes the code to use MPI to exchange data between proces- 

sors. SMP allows the compiler to utilize shared memory references found in shared memory 

and distributed shared memory machines. SMP was used since it typically shows better 

performance for our targeted shared memory architectures. 

Since HPF is a language, it requires a compiler to generate executable code. This starkly 

contrasts with MPI, which is not a separate language, but rather calls to a library of func- 

tions. The compiler for MPI code is a native compiler (usually C or FORTRAN) that sees 

the calls to MPI simply as calls to functions. The native compiler has no ability to optimize 

parallelism through message passing library calls. As such, the MPI programmer has sole 

responsibility for writing the best possible parallel code. The HPF user can also write clear 

and precise parallel code, but the compiler is more forgiving of poorly written code. It can 

also restructure code to promote parallelism. 

Consider the case of processor synchronization. In parallel programming, synchronization 
points are costly. Most often, these points are collective barriers at which each process must 
arrive before they can all continue. These points may also exist at entry and exit points for 
code that is sequential and must be processed by only one processor. The HPF compiler 

tries very hard to remove or limit barrier code generation. One way it does this is through 
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loop fusing. As an example, consider the following two FORALL loops and scalar initialization 
of the variable a: 

forall (i=l:nelem) 

ielaxis(i) = iaxis(ielmat(i)) 

elangle(i) = angle(ielmat(i)) 

end forall 

a=b*c/d 

forall (I=l:nelem) 

elkxx(i) = kxx(ielmat(i)) 

elkxy(i) = kxy(ielmat(i)) 

elkyy(i) = kyy(ielmat(i)) 

end forall 

As long as it maintains the intent of the FORALL construct, the compiler can generate the 
most efficient code possible to achieve the objective. The compiler can determine that there 
are no dependencies between the two loops, and that the second FORALL construct contains 
no references to the scalar computation. In this case, the compiler can simply move the 
scalar computation before or after the FORALL statements and fuse the two loops without 
losing correctness or semantics. This allows for the removal of library calls to begin and 
end local parallel sections. The HPF compiler moved the scalar computation to a point 
following the second FORALL, fused the separate FORALL loops, and generated the following 
intermediate code. The code generated for the programmer-fused loop is identical: 

do i$i = i$$l, i$$u 

ielaxis(i$i+ielaxis$sd(lO)) = iaxis(ielmat(i$i+ielmat$sd(lO))+ 

+iaxis$sd(lO)) 

elangle(i$i+elangle$sdl(lO)) = angle(ielmat(i$i+ielmat$sd(lO))+ 

+angle$sd(lO)) 

elkxx(i$i+elangle$sdl(lO)) = kxx(ielmat(i$i+ielmat$sd(lO))+ 

+kxx$sd(lO)) 
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elkxy(i$i+elangle$sdl(lO)) = kxy(ielmat(i$i+ielmat$sd(lO))+ 

+kxy$sd(lO)) 

elkyy(i$i+elangle$sdl(lO)) = kyy(ielmat(i$i+ielmat$sd(lO))+ 

+kyy$sd(lO)) 

enddo 

This example is somewhat contrived; since these FORALL loops are independent, the source 

code could have equally been written using INDEPENDENT do loops as well. The FORALL 

constructs are distinctly different from INDEPENDENT do loops though. The INDEPENDENT do 

loops can have scalar temporaries. Precedence graphs of the two constructs for similar code 

bodies are very different and hence require different control and data flow analysis. In fact, 

the same exercise was attempted using INDEPENDENT do loops to see if the compiler would 

fuse them. For any of several reasons, the current version of the compiler did not fuse the 

loops. 

While it is the job of the HPF compiler to generate efficient code and communication, the 

programmer can assist with certain coding styles. Synchronization points can be reduced as 

well. For example, programming in styles appropriate for systolic SIMD machines should be 

avoided on MIMD parallel computers. The following code fragment produced intermediate 

‘code for the Cray T3E-1200 with barriers following each WHERE statement: 

where (fillfac < 1.0) 

rhs = cvol * fillold - kp + gkflow 

fillfac = rhs / cvol 

end where 

where (fillold /= 1.0 -and. fillfac > 0.999) 

fillfac = 1.0 

end where 

where (fillold /= 1.0 .and. fillfac < 0.0) 

9 



fillfac = 0.0 

end where 

where (fillold == 1.0) 

fillfac = 1.0 

end where 

These masked array assignments were rewritten using one INDEPENDENT do loop. This 

new formulation was more efficient in that it contained no internal synchronization points. It 

is somewhat unrealistic for the programmer to expect developing compilers to be exhaustive 

in their ability to optimally process every coding possibility. Indeed, compilers for robust 

high-level languages often require years to become very efficient at code generation. This 

further highlights the need for parallel programmers to understand the architecture they will 

utilize and write appropriate code. The INDEPENDENT do loop should actually perform quite 

well on many different computers. 

The HPF compiler is very good at generating efficient code for RISC-based superscalar 
processors from Fortran 90 array syntax statements. Consider the following code fragment: 

slocal = s * wssqrtrec 

sk = wssqrtrec * temp * 3.14159 

These statements appear to be well suited for vector processing. On MIMD shared memory 

machines, the HPF compiler will convert this code to SPMD execution by creating equivalent 

FORALL statements. As written, it appears that processor synchronization may occur after 

the assignment to slocal before the assignment to sk begins. In HPF, it may be tempting 

to rewrite the code using the INDEPENDENT directive. The following code fragment performs 

the same function as the array syntax version: 

!hpf$ independent 

10 



do i = 1, n 

slocal(i) = s(i) * wssqrtrec(i) 

Sk(i) = wssqrtrec(i) * temp(i) * 3.14159 

enddo 

In general, however, the HPF compiler is also very good at Fortran 90 array syntax merging, 

and rewriting the code is unnecessary. HPF can analyze consecutive array syntax statements 

and merge them if the meaning is not altered. If the arrays are conformable and distributed 

identically, the compiler merges the two into a parallel region with no synchronization be- 

tween the individual statements. The resultant code for the two versions is practically the 

same. 

HPF does share in one of Fortran 90’s problems with code optimization and the use of 

array syntax. Fortran 90 provides the ability for programmers to use assumed-shape dummy 

arrays as a special type of procedure parameter. Array bounds no longer have to be passed as 

arguments along with the array to a called procedure. These arrays are declared with a type 

and rank (the number of comma separated entries), but the size (or bounds) is determined at 

runtime based on the array passed to the procedure. An explicit interface to the procedure 

ensures the type, order, and rank are coherent between caller and callee. However, traditional 

compiler optimizations, such as pipelining and the associated loop fusion to boost pipelining 

potential, can be taxed by this method. The compiler cannot fuse loops whose bounds 

cannot be determined. Transitive properties and other interprocedural analyses can be used 

to assist the compiler in determining whether two arrays are of the same extent, but this is 

a complicated task. In these instances, it is preferable to use the INDEPENDENT directive to 

ensure that the loops are fused. 

In the past, many data parallel languages required the extensive use of array syntax 

to describe parallelism. CM-Fortran codes for the CM-5 relied heavily on array syntax to 

achieve parallel execution. While it can be argued that this syntax is easier to read, it has 
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several potential faults. A major drawback in using array syntax notation for parallelism is 

that many temporary multidimensional arrays are often required. This problem can quickly 

get out of hand for codes with large data sets. This was a major reason for establishing the 

INDEPENDENT do loop and NEW clause construct in HPF. 

Consider the following array syntax statements: 

x(:> = w(2,:)*p(3,:) - w(3,:)*p(2,:) 

y(:> = w(3,:)*p(l,:) - w(l,:)*p(3,:) 

z(:> = w(l,:)*p(2,:) - w(2,:)*p(l,:) 

d(4,:) = sqrt(x(:)*x(:> + y(:)*y(:) + z(:)*z(:)) 

This can be rewritten as an independent loop which allows the conversion of x, y, and z to 
scalars: 

!hpf$ independent, new(x, y, z) 

do j = 1, n 

x = w(2,i) * p(3,i) - w(3,i) * p(2,i) 

y = w(3,i) * p(l,i) - w(l,i) * p(3,i) 

2 = w(l,i) * p(2,i) - w(2,i) * p(l,i) 

d(4,i) = sqrt(x**2 + y**2 + z**2) 

enddo 

If the extent of the final dimension is n, we can use only three scalars and reduce memory 

requirements by 3n. Furthermore, the loop will require much less storage and will be able 

to take advantage of scalar values. This can have an enormous impact on cache-based 

architectures. 

It may also be the case that further analysis of the code will allow for scalar replace- 

ment of w and p if they are used primarily as temporaries. The code was restructured in 

critical regions to use the INDEPENDENT clause. Also targeted were small functions that used 
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multidimensional arrays as temporaries. In many of these functions, scalar replacement was 

performed by unrolling small inner loops. More thorough findings on the memory conserved 

through these techniques will be reported in the future. Further analysis of the code will 

undoubtedly reveal more opportunities for wider use of the INDEPENDENT directive and array 

to scalar conversion. 

Strict use of the array syntax coding style may also be detrimental for another reason. 
Array syntax code is also difficult for the compiler to analyze. Consider the following code 
fragment: 

aelpk(1,:) = fel(l,l,:)*y(lm(l,:)) + 

& fel(l,2,:)*y(lm(2,:>> + fe1(1,3,:)*y(lm(3,:) 

aelpk (2,:) = fel(2,1,:)*y(lm(l,:)) + 

> 

& fe1(2,2,:)*y(lm(2,:)) + fe1(2,3,:)*y(lm(3,:)) 

aelpk (3,:) = fel(3,l,:)*y(lm(l,:)) + 

&! fe1(3,2,:)*y(lm(2,:)) + fe1(3,3,:)*y(lm(3,:)) 

The indirect referencing in y results in a gather operation from potentially remote nodes. As 

previously noted, HPF is good at array syntax merging. The compiler merged these three 

loops into one locally executed do loop. However, it also generated approximately 120 lines 

of code to compute the data communication schedules and other overhead. Furthermore, it 

primarily used more complicated memory referencing and references into vectors throughout 

the do loops. 

Conversely, consider the following equivalent INDEPENDENT do loop: 

!hpf$ independent, neW(tl, t2, t3) 

do j = 1, nelem 

tl = y(lm(l,j>') 

t2 = y(lm(2,j)) 

t3 = y(lm(3,j)) 
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aelpk(l,j) = fel(l,l,j)*tl+fel(l,2,j)*t2+fe1(1,3,j)*t3 
aelpk(2,j) = fel(2,l,j)*tl+fel(2,2,j)*t2+fe1(2,3,j)*t3 
aelpk(3,j) = fel(3,l,j)*tl+fel(3,2,j)*t2+fe1(3,3,j)*t3 

enddo 

Here, the programmer assisted the compiler by telling it certain values will be reused. The 

code required to compute the communication schedules and other overhead was cut by over 

50% to approximately 49 lines. 

Also, the concurrent do loop contained direct references to the scalars t 1, t2, and t3, 

and generally had less complicated memory referencing. Most current architectures must 

use at least two layers of cache to overcome the discrepancy between memory access speeds 

and processor speeds. The opportunity for independent scalar quantities gives the parallel 

programmer the ability to write more cache-friendly code. This INDEPENDENT directive should 

also extend well to new techniques and capabilities in the Fortran 90 language, such as 

abstract data types and pointers, and new approaches for cache optimizations [8]. The 

execution time for a very small problem was reduced from 24 s using the array syntax 

version to 21 s using the INDEPENDENT formulation. Obviously, larger problems should see 

more pronounced gains. 

3.2 Locality. As with any parallel code, the paramount concern rests in limiting to 

the greatest extent possible the amount of communication that must occur between the pro- 

cessors in the parallel pool. Determining the optimal distribution of data objects operated 

on by a program is a global optimization problem, and as such is not tractable. Accord- 

ingly, HPF provides directives for data mapping (alignment and distribution) to advise the 

compiler on how best to distribute data elements to the parallel processors. As would be ex- 

pected, these directives work best at reducing communication in an environment comprised 

of regular, grid-based data. For instance, with a 2-D or 3-D grid of data, it is relatively 

straightforward for the compiler to distribute data evenly across the parallel processors. For 
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“ghost points,” those items on the data mapping borders which are shared between proces- 

sors, it is also feasible for the compiler to vectorize and agglomerate the data that must be 

communicated between processors, thus reducing the overall time spent in communication. 

Efficient scheduling in these cases is also possible to hide memory hierarchy latency. 

Communication is implicit in HPF as compared to explicit calls found in message passing 

codes. While this in principle is a factor to make coding in HPF “easier” than traditional 

message passing languages, it also represents an area that requires special attention if HPF 

codes are to perform as well as their message passing counterparts. Communication in HPF 

results from the interplay between the program being executed and the data layout resulting 

from the distribution directives. An obvious source of communication is found in collective 

operations, such as summation reduction. These operations obviously require some sort of 

cross processor communication. Furthermore, with unstructured finite element meshes, there 

is the distinct possibility that the HPF data mapping directives will not serve to keep the 

data as processor-local as possible. We now discuss how these potential bottlenecks can be 

mitigated. 

3.2.1 Collective Operations. Preceding data parallel languages recognized and at- 

tempted to address the potential poor performance of collective routines. CM-Fortran, used 

on the CM-5 computer, used the Connection Machine Scientific Software Library (CMSSL) 

which was created for array syntax notation and data parallel architectures. The CM-Fortran 

code used the CMSSL collective routines partscattersetup, partscatter, part-gather-setup, 

and part-gather. These routines were used to perform partitioned scatter and gather opera- 

tions, respectively. These routines use source arrays, destination arrays, and pointer arrays 

containing the scatter/gather pattern. Data are then scattered/gathered from the source 

array to the destination array. 

The CMSSL routines partscattersetup and part-gather-setup were available to optimize 

data locality and reduce the associated communication time. During the setup phase, these 
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routines analyzed the required communication patterns that would be required and reordered 

the pointer arrays to achieve better data locality. 

These collective routines are also possible in HPF. In HPF, there are no default library 
routines to do gather operations. The CMSSL equivalent of the two calls 

call part-gather-setup(lm,.true.,fillfac,setup,ier) 

call part-gather(elfill,fillfac,.true.,setup) 

are performed by nested INDEPENDENT do loops 

!hpf$ independent, new(j) 

do i = 1, ndel 

!hpf$ independent 

do j = 1, nelem 

elfill(i,j> = fillfac(lm(i,j>> 

enddo 

enddo 

The scatter operation is slightly different. Here are the example CMSSL routines to perform 
a scatter operation 

call part-scatter-setup(lm, .true., wgnode, setup, ier) 

call part-scatter(wgnode, wel, .true., setup) 

There is a sum-scatter HPF library function to perform the reduction 

wgnode = sum-scatter(we1, wgnode, lm) 

The full details of the implementation are hidden, but most likely this call computes a 

communication schedule for data going to and arriving from remote nodes, moves the data, 
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and then computes the reduction. It is also possible for robust compilers to perform the 

reductions locally before sending out the data. 

These communication operations can be very expensive. A profile of our code revealed 

that it was communication bound with well over 50% of the execution time being spent in 

calls to the sumscatter library routine. Approximately 20% of the time was spent in code 

segments performing gather operations. The library routine sumscatter is called repeatedly, 

thousands of times even for small problems. Since it is a library routine, our assumption 

was that each time it was called, a schedule was being computed and executed, and any 

information gathered by the scheduling algorithm was being discarded before the next call. 

Conversations with the Portland Group confirmed that this was the case. 

Obviously, the ability to reuse communication schedules is essential to getting good per- 
formance with this code. The Portland Group has already recognized this need. They 
supplied us with an experimental release 2.4-dev99a of their HPF compiler. The Cray T3E 
is the only computer currently targeted in this release. This version of the software al- 
lows the programmer to store a pointer to the communication schedule determined by the 

compiler and reuse it. The schedule can be called repeatedly, hence removing the need to 
recompute the schedule at each call to sumscatter. While the details of the communication 
computation are hidden, it is easy to envision a nonoptimal scheduling algorithm taking at 
least 0(n2) time, with n being the number of elements in a finite element mesh. The call to 
alpkml = sum-scatter (aelpk, alpkml , lm> is replaced with 

sked = pghpf~comm~sum~scatter~2(tfill,yl,.true.,lm,.true. 

. . . 

call pghpf-comm-execute(sked, alpkml, aelpk) 

. . . 

call pghpf-comm-free(l,sked) 

The Portland Group reports that some users have experienced a threefold code speedup 

after switching to reusable schedules. A marked decrease in execution time was noticed with 

17 



reusable schedules. The wall clock execution time for a very small problem (1344 nodes, 

2560 elements) using four processors dropped from 28.52 s down to 10.23 s. A 16-processor 

run of an airframe structure (29,171 nodes, 58,187 elements) dropped from 15534.78 s to 

6111.37 s, cutting the time by a factor of 2.5. 

While’gather operations do not contain the arithmetic reduction, they are equally prob- 

lematic. As mentioned previously, gathers generate a lot of code to compute off-node data 

locations. In test runs, the gathers started to take longer than the reusable schedule scatter 

operations. The ability to reuse communication schedules inside of do independent loops 

used for gathers is also under investigation. Syntax to accomplish this has been proposed by 

the Japan Association for HPF (JAHPF) [9]. C urrently, the ability to reuse communication 

schedules remains a vendor-specific feature, as the HPF 3.0 standard does not address the 

issue. It will undoubtedly be incorporated into future standards. 

3.2.2 Mesh Reconfiguration. The locality of reference greatly impacts the perfor- 

mance of a data parallel program. HPF provides several directives and distributions to map 

data and promote locality. Of these, the DISTRIBUTE and ALIGN directives are most com- 

mon. The DISTRIBUTE directive indicates how an array is to be partitioned to the various 

processors. Array alignment, to make sure that corresponding entries of different arrays are 

on the same processor, can be specified using the ALIGN directive. For example, in the earlier 

example of A = B * C, by aligning B and C with A, we know that A(l), B(l), and C(1) 

all reside on the same processor. The array dimensions can be distributed as *, BLOCK, or 

CYCLIC. 

For some applications, such as 2-D image processing routines, these distributions map 

easily and intuitively to the data to promote locality of reference. However, for unstruc- 

tured finite element mesh-based data, the data sets are usually element and node based. 

Depending on the quality of the original finite element mesh, a BLOCK or CYCLIC distribu- 

tion of the data will require differing amounts of communication. For example, consider the 
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Accordingly, it is extremely advantageous to have a preprocessing step which reorders 

the data in a smart fashion based on the expected number of processors to be used. This 

technique is already used in SPMD message passing codes where the input domain is decom- 

posed into a number of partitions equal to the number of processors. The following strategy 

was employed. 

First, the mesh was partitioned using unstructured graph or mesh partitioning software. 

These packages attempt to divide the mesh, either according the the nodal or element data, 

into a number of partitions while attempting to limit the number of shared nodes between 

partitions. This step provided a list of elements for each domain. Second, the domain shared 

node vectors were computed. Third, for each domain or partition, the nodes that are shared 

between domains are grouped and renumber first. For example, for partition 0, all the nodes 

shared with partition 1 are grouped and renumbered, then partition 2, etc. This step helps 

promote data agglomeration and message vectoring. By placing all of the shared items in 

a contiguous location, hopefully the compiler will have to do just one send consisting of a 

memory starting location and vector length. Finally, all of the domaininterior nodes are 

renumbered. The next domain is then processed in a similar fashion. 

This process, if implemented efficiently, can be very fast. This renumbering technique 

is on the order of O(n log n) + O(m), where n is the number of nodes that are shared 

between the various domains, and m is the number of nodes in the mesh. In practice, even 

though meshes can be quite large, the mesh or graph partitioning step is more onerous and 

time consuming. Hence, this implementation as described is bounded only by the speed 

of the mesh partitioning software. Figure 2 shows how nodal renumbering in the elements 

can reduce the required communications across processor memories. Communications now 

consist of nodal-based data that must be shared between the domains and artifacts left over 

from domain partitions not exactly matching the BLOCK distribution boundaries as computed 

by the HPF compiler. 
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item v(2) into cache. However, item ~(8000) will also have to be loaded and may not be 

used on the next iteration. The overall performance is hard to determine a priori due to the 

differing cache architectures (set associative, n-way, etc.) and hardware-software interactions 

(instruction prefetching, speculative code execution, etc.), but it is obvious that this does 

not lead to cache affinity. 

Renumbering techniques were implemented that were proven to improve cache perfor- 

mance by reducing the bandwidth and envelope for sparse matrices [lo]. The Reverse Cuthill- 

McKee (RCM) approach renumbers poorly numbered meshes to reduce the dramatic cardi- 

nality changes between connected element nodes. On message passing implementations of 

COMPOSE, these preprocessing steps have shown roughly a 10% reduction in execution time 

requirements on the Cray T3E system. The timings reported in this monograph are based 

on meshes with somewhat poor numbering, and were done prior to implementing RCM. We 

can roughly assume a similar reduction in the reported timings had the RCM pass been 

available. 

While the aforementioned techniques are very effective at reducing communications, they 

still do not address the problem of using a mesh that cannot be rigidly broken along domains 

to fit into the compiler partition sizes. With BLOCK distributions, the data is partitioned into 

contiguous, equal-sized blocks the size of $, where N is the cardinality of the data set and 

P is the number of processors. So, even while using an advanced renumbering technique as 

described previously, some communication will be required to move data for these overlapping 

points. 

One possible way to eliminate these communications for ghost points is through “mesh 

padding.” In this process, a graph partition is determined and renumbered as before. Then, 

the block distribution boundaries are computed based on the mesh size and compared to how 

well the graph/finite element partition maps to these block boundaries. Nodes and elements 

are then created as needed to make the finite element mesh fit the mesh partition. Depending 
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upon the initial mesh configuration, the number of nodes and elements that have to be created 

vary from the t,ens to the hundreds. However, this approach has several drawbacks. The 

original mesh intent may be lost by adding new nodes and elements. Furthermore, we are 

adding local computations at the expense of reducing communications. 

A better approach has been developed. A new data distribution technique available 

in the Portland Group HPF compiler release 3.0 addresses these concerns by providing 

asymmetrical block distribution, thus removing the need for mesh padding [9]. The new 

approach allows for “soft” BLOCK boundaries that can be set by the software or the user at 

runtime and not the compiler at compile time. Combined with the mesh renumber technique 

described above, it should limit all communications except for true domain boundary entries. 

The syntax is 

!HPF$ DISTRIBUTE A(GEN-BLOCK(DIST) 1. 

Here, A is the array to be distributed, and DIST is an array whose cardinality is the number 

of processors on which the code will run. Each element of DIST contains the size of the data 

block that is to be placed on the processor. Since the mesh partitioning and renumbering 

pass has already decomposed the data into domains, it can also provide the DIST array with 

precise numbers as to the size of the asymmetrical blocks. The overall effect should be to 

limit communication to all but the essential shared nodes and hence reduce execution time. 

Figure 3 shows the configuration of this optimal data-parallel mesh. 

Unfortunately, new languages and compilers do have their faults, as we were unable to 

utilize this new feature. As released, the compiler is unable to generate an executable code 

that uses generic block distribution and is compiled with the shared memory addressing mode 

enabled. In the case of the T3E system, shared memory referencing causes the compiler to 

generate code that uses very efficient Cray one-sided “get” and “put” communication calls. 
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4. Performance Data 

For two reasons, the discussion of the performance of HPF is limited to the Cray T3E 

system alone. First, the ability to reuse communication schedules is only supported on the 

HPF compiler for the Cray T3E. Second, PGHPF has been highly optimized for the Cray 

T3E system compared to other major architectures [II]. The wall clock execution times for 

a representative problem with varying processor counts are given in Table 1. This table lists 

the time of execution using reusable communication schedules for the SUM-SCATTER operation. 

Since we overwhelmingly showed the need for reusable schedules in the 16-processor case, we 

considered further benchmarking using the SUM-SCATTER library routine to be a waste of CPU 

hours. Table 1 shows the sometimes dramatic improvement of simple mesh preprocessing 

for data parallel execution. 

Table 1: Execution Times (Seconds) for a Mesh Analysis on a Cray T3E. 

Number of processors 

Problem 2 4 8 16 32 

Airframe Original Mesh 20951.89 13117.40 8515.41 6111.37 3603.69 

structure Renumbered Mesh 19189.21 9989.31 5553.45 3135.03 2095.47 

The limits to speedup appear to reside wholly in areas of the code requiring interprocessor 

communication. As such, the ability to perform precommunication reductions and reuse 

communication schedules appear to be the best opportunity at increasing code speed. The 

hope is that asymmetric block distribution and schedule reuse be incorporated into future 

releases of the compiler. Mesh renumbering, combined with these techniques, present the 

best hope for making HPF viable for unstructured grid problems. 

Currently, MPI provides the best wall clock solution for this class of problems. More 

information will be provided in future monographs, but an example is telling. On one com- 

parision problem (45,547 nodes, 89,945 elements), the MPI implementation of COMPOSE 
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required about 1038 s to complete on a 16-processor run on the Cray T3E system. The 

preprocessed and optimized HPF run required almost 3x as long at 2949 s. HPF must 

overcome its current limitations to be more broadly applicable. 

5. Conclusion 

The HPF language and the data parallel model it is built upon have both shown appli- 

cability to past, current, and no doubt future parallel computer platforms. As more and 

more choices become available to achieve parallelism, it should be pointed out that there is 

no single panacea for parallel programming. Some researchers believe that data parallel is a 

natural way of thinking and achieving parallelism, compared to something like shared mem- 

ory programming or message passing. Others, first exposed to parallelism with loop-level 

directives or MPI, would probably say that shared memory or SPMD programming is more 

natural. To a large extent, it no doubt depends on the individual and past history. 

Furthermore, it is also difficult to judge effort and payoff between various parallel pro- 

gramming tools and languages. Some researchers have expressed beliefs that it is easier to 

write and maintain code in HPF rather than message passing with MPI [12]. Such state- 

ments are misleading. Good performance, however measured, always takes time to achieve. 

HPF code requires careful and time consuming tuning, as does a code written using other 

languages and libraries. 

In summary, HPF provides a viable parallel programming capability for some classes of 

problems, but it needs improvements. The standard suffers by not addressing very impor- 

tant considerations like interprocessor communication schedules. These issues can only be 

addressed at the compiler and standardization levels. No amount of code tuning can correct 

these problems. Therefore, it is up to the individual to decide if this degraded performance 

is acceptable over some possibly more “expensive” alternative. As the compilers and the 

standard continue to mature, they will only improve-their survival depends upon it. 
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